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Optimal Sequential Selection of a Monotone
Sequence from a Random Sample

By
Stephen M. Samuels and J. Michael Steele

1. Introduction.

A central theme in the theory of optimal stopping is that many
stochastic tasks can be performed almost as well by someone unable to
foresee the future as by a provhet. In one classic example, the
"secretary problem”, the task is to stop at the largest of n sequentially
observed independent identically distributed observations xl,xg,...,xn.
Without clairvoyance one attains XT vwhere T 1is some stopping time,

but a prophet is always able to attain max Xi'
1<i<n

That the prophet's advantage is rather modest follows from the well

known fact that no matter how large n 1is there is a stopping time 7

n

for which

(1.1) P(X, = max xi) > et s
n lSiSn

(see, e.g. Gilbert and Mosteller (1966)).

The stochastic task we consider here is more complex than the
secretary problem and the central theme is illustrated in a different
way from (1.1). To set the problem, let [xi: 1 <1i< o}, denote
independent random variables with contimuous distribution F. The

basic object of interest is

o




L = max{k: xil > )(12>--->xik with 1<i,<i,<.--<iy

< n},

the length of the longest monotone decreasing subsequence of the sample
(xl,xe,... ,Xn]. (We could equally well have considered increasing sub-
sequences but the notation will be simpler this way.) The variable L n

has been studied extensively and it is now known that

(1.2) EL ~ 2/n .

The first result, EL ~ c/n, was obtained by Hammersley (1972) via
an ingeniouvs use of the planar Poisson process. Baer and Brock (1968) had
conjectured earlier on the basis of computer simulations that ¢ = 2. By
a delicate variational argument Logan and Shepp (1977 ) proved that c¢ is
at least 2 and by a similar method Ver¥ik and Kerov (1977) established

that ¢ equals 2.

How well can one sequentially choose a monotone decreasing subsequence
using only stopping times? TFormally, we call a sequence of stopping times T 1'2,...

a policy if (1) they are adapted to {xi:1_<_1<oo], (2)l_<_rl<12<--- ,

and (3) X_ >X_ >.-- . The class of all policles is denoted by S
1 2
and our nmain problem is to determine

u, = 8up E (max{k: T < n}) .
T€

The quantity u, is the largest expected length of a monotone decreasing




subsequence which can be achieved by sequential selection. Although w

would a priori depend on F, one can easily check that it is the same

for all continuous F. Moreover the optimal policy for a given F can
be obtained via the probability integral transform from the policy for
the uniform distribution on [0,1].

Our main result is the following

THEOREM.

The intultive content of this result is another illustration of the
central theme; the prophet asymptotically outperforms the intelligent |
(but non-clairvoyant) individual by only a factor of /2. One
should also note that the naive individual who too eagerly

reports each successive record low achieves an expected length of only

n
2 1/k ~ logn and thus does much worse than the prophet or intelligent
k=1

individual.

Our proof that u ~\/5 begins with a simple algorithm for computing
u, based on an integral equation obtained by dynamic programming. Standing
alone, the integral equation seems to be ineffective, so in Section 3 we
prove by a subadditivity argument that un/JH has a limit. A sequence of
efficient, but suboptimal, policies are then given in Section 4 which show
1im un/ﬁ >42. The crux of the proof is in Section 5, where the integral
equation is finally used to show lim un/ﬁ <2 after first establishing

an essential regularity property of the solution by a probabilistic argument.




The proof outlined above yields several results en route. In
particular, we obtain results on optimal selection when the sample
size is random. These results as well as comments on a related
problem are collected in Section 6.

In the final section we are fortunate to be able to include a result
due to Burgess Davis on the sequential selection of a decreasing subsequence
from a random permutation. This result teams up with the main theorem of
this paper to settle a second conjecture given in the computational paper
of Baer and Brock (1968). We would like to thank Professor Davis for his

kind suggestion that his result be included in the present paper.

2. An Algorithm for Computing the Optimal Expected Length.

First of all, as we remarked in the introduction, we may assume
without loss of generality that the common distribution of the observa-

tions xl,xa,... is uniform on (0,1).

Let us define, for each t ¢ (0,1},

(2.1) .= (1= (1,75...) ed X, <t,1=1,2,..},

T3

the class of policlies which only select observations smaller than t.
We also let

(2.2) un(t) = sup“stE[ma.x(k: T < n}} .

Clecarly

(2.3)

|
i
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and

! (2.4) u, (t) = P(X; < t) = ¢,

R v W

We also record the trivial fact: uo(t) s 0.

Now fix t and consider n+l available observations. Because of
the stationarity of the Xi's , the maximal conditional expected sub-
sequence length, given X;, will be just un(t) if X is not selected
and 1+un(x1) if X is selected (in which case necessarily X, < t).
Since the optimal policy must do vhichever maximizes the conditional

expectation, we have the algorithm:

(2.5)  wy,y(t) =u

L (8)P(X, 2t)+Emax{un(t):1*’un(xl)]I{xl <t}

t
; (2t ), () +fo max(u_(t),1+u, (s)}ds .

It follows easily that for each n and t, the policy which achieves

un(t) is
(2.6) 1) = min(i: X; <t and 1+u , (X) 2w ()}
> n(arbitrary) if no such i < n
Ty4] = min(i > T X < ka and l+u _, (Xi) >u g (ka)}

> n(arbitrary) if no such i < nor if 7 >n.

Since (2.4) and (2.5) imply that each un(-) is strictly increasing on
*
(0,1), we can implicitly define the functions t_(n) by the following relations:




2.7) u (EN(E)) = u (E)-1 4f w (&) <1
WORN: 1f u(t)<1.

Equation (2.6) now simplifies to the following:

- . *
(2.8a) Ty = min(i: tn-i(t) <X < t}
. ¥*
(2.8v) Tyes = min{i > Tt by (ka) <X < ka] .

One would naturally like to show u o~ J2n directly from (2.5),
but this does not seem possible. The integral equation (2.5) becomes i

effective only after substantial quantitative information about un(t)
is obtained.

Here we should remark that- { |

‘ -
(2.9) u(6) = Txt ¥ (red (1)
k=1 J=k

for all t small enough so that the right side of (2,9) is less than or

equal to one. This can be shown either directly from the integral equation

or by noting that when un(t) <1 the optimal policy is to select all
{ successive minima among those Xi‘s, =1,2,...,n, vhich are smaller

than t. The right side of (2.9) is the expected number of such minima.

3., Existence of the Limit.

To show that u n/ﬁ has a 1imit, we shall first prove that a limit
exists for an analagous planar Poisson process prcblem and then show that
] the two problems are asymptotically similar. The proof is a version of
Hammersley!s subadditivity idea made somewhat simpler because we deal

only with expectations rather than with random variables.




3a. The Planar Poisson Process Problem.

Let 2Z ,Zg,... s be IID, each exponentially distributed with mean
one, and independent of the X;'s which are IID uniform on (0,1).

Let .QZ be the class of policies T = ('rl,'r sees) with

2

(a) each T; adapted to [(Zi,xi): 1<i< o)

) 1<

l<’1’

5 < orr and XT >X,r > e s

1 2

and let

T
k
w(A) = sup E(max k: 3. 2, <A) .
Tedy =1t

In other words, we observe a Poisson process with arrival rate one,

on an interval of length A. At each arrival time we are allowed to

observe a random variable uniform on (0,1) and independent of its
predecessors, and the object is to select a decreasing subsequence of
maximal expected length.

What makes this problem so appealing is the well-known fact that,

if we choose p and t, each in (0,1), then the following two processes

are also Poisson:

(a) Those arrival times in (0,p\) for which the corresponding

xi's are > t,

(b) Those arrival times in (pA,A) for which the corresponding

xi's are < t.




Those precesses have expected mumbers of arrivals p(l-t)A and (1-p)ta

respectively. It follows, by considering the subclass of ‘pz consigting

e e e RS e it ke

of those 1's with

T

i
X, 2t if ¥ Z5 < PA
i j=1
Ty
<t if § z,>pr,
1 Y
that
(3.1) W) > w(p(Q-t)A) + w({1-p)tA) .
1
If we now define |
o(x) = w(x2) ]

and choose A - (r+s)2, p = 1-t = r/(r+s), (3.1) becomes
5.2) p(rs) > p(r) + o(s) .

By the elementary lemma on subadditive sequences (Fekete (1923), or
Khinehin (1957)), this implies the existence of

(3.3) 7 = lim o(t)/t = 1im sup p(t)/t > 1 .,
t 4

The finiteness of 7 follows from the inequality

< § o VRSMA
wi\) < =~ EI,L <M vk < MYN ;
..k k Lk_ s k! - L4




the second inequality holds for some constant M by (1.2). The

last inequality is just an application of the familiar inequality
1/2

Elx] < ®°) .

Thus we have shown that there is a finite 7y > O such that

lim w(t2 Y/t
t o

(3.4) Y

1lim w(t)NVT .

t >

3b. Asymptotic Similarity of the Two Processes.

We will now use some elementary estimates to show that u, o~ win).

With the usual notation

K
X ae™/51

P(k;N) =
J=0

and

PN ) = 1-P(k-1;))
we will prove the inequalities:
(3.5) u[(l-e))\] P(L(@-eMI5N) <w(n)
and
(3.6) wih) < U (1+e ] P([(Q+eMI3N) + AP([ (L+eN)

The first inequality holds since the optimal policy for n = [(1-e¢)\]

observations used on the Poisson process (paying no heed to the Zi's)




would yield an expected length of at least u[ (1-e ]
whenever there are at least [(1-¢)A\] arrivals.

For the second inequality let N be the number of arrivals and
let L be the subsequence length obtained when the optimal policy
in JZ is used. We then have

w\) = E(LIN < [(@+eN])P([1+eNI5N)

+ E{E(LlN)I{D[(heN}] .

We note E(LIN< [(1+eN]) <u and trivially E(L|N) < N.

[ (1+en]
Inequality (3.6) then follows since

ENL(ns [(eeln]) = AP([ (Q+e 3N )

From the fact (3.4) that w(A) ~7yA and elementary bounds on the

Poisson distribution one now easily deduces from (3.5) and (3.6) that

un~71/— .

We remark that it is not hard to extend this result to show that for each

te(0,1] one has un(t)//E-’%

10
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. A lower Bound for the Limit.

For any constant @ > O, and for each n, we consider the policy

t(n) = 1(n;a), where

i}

'rl(n) min{j: X Zl-a/fr'l-}

J
Teay (@) = minld> 7 (): X, [xrk(n)a/,/ﬁ, ka(n))] .

We shall show that for these policies

(4.1) lim inf E max({k: 7 (n) < n} > /n min(@,2/a) .
n 4w
The right side of (4.1) is maximized for o =2, which shows that
lim :'Lnf‘n - un/./r_l > ./2-. (0f course when we complete the proof of
the Theorem, (4.1) with @ =4/2 will imply that the policies 7(n; 2)
are asymptotically optimal.)
What makes the policies 7T(n) easy to evaluate is the fact that if

n - - diti 1
ka(n) >aNn, then 7, (n)-7 (n) and X'rk(n) X, are conditionally

x+1 (@)
independent and independent of [Tl (n),---,Tk(n)i qu(n)""’xrk(n)} ’

with geometric (p =a//n) and uniform on (0,a//n) distributions

respectively. Hence we now let [Yk

[Zk:k =1,2,...) be independent sequences of IID random variables with

H k=l,2,o¢-} and

these geometric and uniform distributions respectively. Also set Sk =Yl + o0 ~+Yk

and sl" = Z1+ +Zk, and define

M = max(k: S, <n and S} < l-a/yn} .

11




We first observe

(&.2) EM < E max(k: 'rk(n) <n}.

Now, for any € > O, Chebyshev's inequality gives

1 +O(n-1/2) if k< (l-e)anl/2
P(Sk <n) =
o(n"t/2) 1f k> (L+e)ant/®
and
140 (n"1/2) if k< (1-¢)(2/c )n}/2
P(S; < 1-a/yn) =
o(n~1/2) if x> (1+e) (2/a)nt/? .
The O(n-l/ 2) terms are uniformly small in the indicated range, 8o,

by the independence of the two sequences,

n
EM_= ¥ P(S_<n)P(S! <1-a//n) ~ nl/2 min(a,2/a) .
nooS k - k -
By (4.2), this shows that (4.1) holds, completing the proof.

5 An Upper Bound for the lLimit.

Now that we know that 1lim un/./ﬁ exists and is at least y2, to

complete the proof of the Theorem it will suffice to show that

(5.1) lim inf un/\/ﬁ <vyZ.

12




Our proof of (5.1) hinges on showing that
(5.2) un(t)/\/f $in t for each n .

The derivative of %(t)/}/*-b- is

t'l/etu;l(t) - (2t)” w (¢)),

50, to prove (5.2), we must show that for each tec(0,1)

(5:3)  u (e)-u () > G)6/thu (t)+o) as s¥ 0.

This inequality will be proved by selecting a suboptimal member of |
(as defined in (2.1)) and showing that this policy improves on the

'xt.+6
optimal policy in 3t by an amount equal to the right side of (5.3).
What we actually do is a bit more complicated than this and involves
showing that un(t) is glso the maximal expected subsequence length in
a problem where the number of available observations is random with a

binomial distribution.

5a. Optimal Selection with Binomially many Observations.

Since the policy in ‘Jt vhich achieves un(t), as given by
(2.8), 1ignores the actual values of all X's vhich are greater than
t, and since the other xi's are, conditionally, IID uniform on (0,t),
we could just as well replace the xi's by a sequence of observable coin
tosses with probability t of heads, letting each toss which gives heads
be accompanied by the next in a sequence of IID random variables uniform

on (O,t).

13




To exploit this observation let Yl’Yz"” and xl,xe,... be
independent sequence of IID random variables, the Y's Bernoulli (t),
and the X's uniform on (0,1). Let U, be the class of policies
adapted to the (Yi ,xi)'s vwhich select a monotone decreasing subse-
quence by selecting only xi's for which Y; =1 and vhich totally
ignore all X;'s for which Y, = O. Then for the un(t) defined by
(2.2) we have the representation

sup E{max(k: T < n}} = u, (t) .

'reut

Since we have made the xi's uniform on (0,1) rather than
on (0,t) -~ this is to avoid confusion in what follows -- the policy

T = (1’1,12,...) which achieves un(t) becomes

*
1, = min{i:y, =1l and ¢, ,(t) < tX; < t)

T =min{i > Tt :Y

- *
K4l GYgLoand ) 4 (thk) < tX, <tx ).

17y
Now suppose we introduce a second coin toss at each stage -- letting
Y]'_,Yé,... be IID Bernoulli (p') and independent of the Y,'s and the
X;'s -- and we allow policies adapted to the [Yi] as well, but maintain
the requirement that all xi's for which Yi = 0 must be ignored. Then
clearly what we have introduced is external randomization; those policies
which depend in some way on the [Yi} are simply randomized policies,

and, of course, none of these can improve on the best non-randomized

policies. In particular, any policy which fgnores all xi's for which

1k




either Y, =0 or Y; =0 is really a policy in tht, ; hence the
expected length of the subsequence of xl,...,xn which it selects is
no greater than un(tt.' ). Just such a policy will be needed in proving
(5.3).

5b. Monotomicity of u_(t)A% .

We now fix n and let the {Yi] be Bernoulli (t+) and: the
(¥j} ve Bermoulli (t/(t+5)). First note that P(Y, =Y}=1) = t. We
consider two randomized policies * and T in utﬁs. The first is
to be equivalent to the optimal policy (for given n) in & vhile

the second is to be a slight modification of the first. Specifically,

we let T = (Tl’Tz"") with

- . - — *
T, = min{isy,=yi=] and t_ (%) < tX,)

- e VY *
Tea] = min{i > T,iY;=Yi=1 and tn-i(tx'rk) < X, < thk} .

We want 1t' to agree with 7t up to the first i < n, if any, at which

Yi =1, Yi =0, and at which Xi would have been selected by 1t if

Yi had been 1. We want 1T' +to0 select this Xi,

continue to behave like 1. We thus define

but thereafter to

La ]
[}

. - (. *
min{i: Y, =1, Yi 0, tn-i(txcri) <X < tx"i]

o if no such i <n,

vhere




= max[tk: Ty < 1)

0 (a.ndxo El)if'rl?_:l.

We then let T' = ('r]'_,Té,...) where

T, if 1. <1

]
[}

k 'k k |
i

t

-tk_I if 'rk<I<*rk+l i

] = [ = - *

Thap =minld > 7 ¥, =¥1 =1 and tn_i(tx,rl,t)gtxi< tx"l';) if>1I.

Now, for convenience, we let L and L' be the lengths of the

subsequences of xl,...,xn gselected by <t and 1' respectively. "

Ten L=1' on (I>n],

EL = un(t) R
and
EL' < u (t+3)
80
(5.4) u (t46) -u _(t) > E(L'-L|I<n) P(I<n) .

Furthermore, from (2.2) and the definitions of v and <',

(5.5) E(L'-L|1=1, x"’1= x) =

148w, , (X, )| 14, xai’“)’“n-i(“) .




(Note: (5.5) is valid even when i=n, since we have set uo(t) =0.)
From (5.4) and (5.5) we see that to establish (5.3) it suffices

to prove

(5.6) P(I <n) < (8/thu(t)+o(8)as &40

and, for each i < n,

(5.7) Eu, _, (X, )| T=4, Xy, %) 2y (E)1/2 3

To prove (5.6) we first remark that, since t/(t+) ®1 as

5J 0, we have

(5.8) P(I<n) = § P(Yi=1, ¥4=0, Ai) +0(8)
i=1

»*
where A, denotes the event [tn-i (txo,i) <X, < txci}. A, is

independent of (Yi=l, Y:'L=O] so

P(Yi=l, 14 =0, Ai) = P(Yi=l, Yi=0) P(Ai)

]

(8/t) P(¥y=Y;=1, A;)

(3/t) p(xi is selected by T) .

Putting this back into (5.8) we have

17




P(I <n)

U

(8/t) % P(X; is selected by ) + o(s)
1=

(8/t) u_(t) + o(6) ,

vhich is (5.6).

To prove (5.7), we first remark that the conditional distribution
of tX; given X=i and X =x is uniform on (t;_i(tx),tx). Also we
i
note that

(5.9) u (6 (8x)) >, (k)1

with equality holding unless u _, (tx)<1l. Hence if un_i(-) were linear on

the interval (t;_i(tx),tx), (5.7) would hold and would in fact be an equality

if L (tx)>1. So the most natural way to establish (5.7) is to prove the
following lemma:

Lemma S.1: For each n, (+) 1s concave.
e, un

Proof. We proceed by induction and first note the lemma is true for

n =1 because ul(t) = t.

Using (2.7), we re-write (2.5) as

Wy (8) = t+(L-t)u () + 2 (£)(u (£)-1)

t
ds .
+ft;(t) un(s)

Formally we have

Wy (8) = 1ow (8)+ (L=t (6)+ &2 (8) (u, (£)-1)

+ ta(thup (6) +up(8) - 7 (t)u (£1(8)) .

18




Now u (X(8)) = (u (£)-1)" and 3'(t) =0 if w (t)<1. Hence

whether or not un(t) >1 we have

w g (8) =1+ (1-(t=t](t))u! (8)

ut 1 (8) = (2=(t-t)(6))Jul (6)= (b=t (£)) ul (¢)

If uni"} is concave (i.e., w < 0), then (t-t;(t)) is increasing.
since, t-t;(t) <1 and w(-)>0, we conclude thet u’  (t) <O, i.e.,
ux:+1(') is concave.

The validity of the foregoing differentiations are also easily
established by induction. To begin note u,(t) =t and t;(t) = 0,
Next the differentisbility of u_ and u! implies t () is
differentiable on {t: un(t)>1}; in fact, we have
t;' (t) = u;l(t)/ur’l(t;(t)). By means of (2.5) one even more easily
sees the required differentiability of u n(- )e

This completes the proof of the lemma, from which we obtain
(5.7)-

5¢. Completion of the Proof.

At last we are ready to prove (5.1). We define

(5.10) ¢y = u/Vm = u ()4,

and note that it only remains to show lim inf ¢, <+/2. By (5.2),

19
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i

(5.11) e mt)2 > u (6)  te(0,1) .

Abbreviate
]

® _ L *
tn = tn(l)

and define s; analagously by

cn(ns;)l/2 = cnﬁ -1

80

* -1 _-1/2 -2 ~1
(5.12) 5, = l-2¢'n ten .

Now (5.10) and (5.11) imply that
*
(5.13) s, <ty
80, m'writing (205), with t = l, as
1
u =u +j;* [un(t)-(un-l)]dt ,

n+l n
n

we conclude from (5.10), (5.11), and (5.13) that
un+1 S cnn

1
(5.14) 1/2 +f* (e, 62 < (e oM/21))at
8

This is perhaps the central inequality in the proof, and it is
made possible by (5.2). The remainder of the proof demands only . ‘

20




straightforward analytical manipulation of the right side |

of (5.14),
Evaluating the right side of (5.14) we get

(5.15) ¢ < cnnl/2 + (2/3 )cnnl/2 (1-523/2)-(1-5:)(cnnl/e-al) . {

Substituting (5.12) and the Taylor series expansion
1-5/2 - (3/2)(1-8%)-(3/8) (1517 + 0((1-s2P) ,

into the right side of (5.15) gives

1/2 -1 -1/2 -1
(5.16) LIRS c e n +0(n

) !

= (n+1)l/ 2(°n“1/2(n+1 )'l/ 2+c;ln'l/ 2(n+1)'1/ 2+o(n'5/ )1 .

Now direct gomputation shows that
o2 @) 21 /e -6 )/t e M2
vhere 5 >0 and 8, *0 as n o Hence (5.16) 1is
! W < )2 2 )2 (e o)) .

From (5.10), with n+l instead of n, we have

(5.17) e < cn+n'l/2(n+l)'l/2{c;l~ (;,‘.l,-)cn +o(1)}.

21




This is exactly what we need to show that lim inf c < J/2 and
thereby complete the proof.

o
We use the fact that ¢ -c/2 1s decreasing in ¢ and zero for

¢ =y2. Choose €>0 and n, large enough so that for all n>n,
the o(1) in (5.17) satisfies

o) < AN(WE+ ) - B)(/E+e)l =5, .

Then for all n > n,

-1/2 -1/2
cn>|/§'+e1) Chyy < Cp-8 D (n+1) .

But
F a2yt o

80 cno> 2+e¢ for some n, >n_ implies cno-hn<‘/§+€ for some m.
Since € >0 1s arbitrary this shows that lim inf c <2 as
required to complete the proof.

We should remark that exactly the same argument can be used to
prove that

un(t)/(nt)l/2 -y2

for every t in (0,1].

neliuadibselan




6. Random Sample Size and an Open Problem.

As an easy consequence of w, ~+2n one can obtain several results
on subsequence selection when the underlying sample size N is random.

In particular we now define uy by

(6.1) uy = Su E{max(k: L9 < N1},

Te
where & consists of those strategies adapted to {Xi};;l but not
adapted to N. When N is Poisson or binomial (with fixed p) one

can easily show that as EN -+ « we have
(6.2) UN ~J‘2ﬁ .

In fact one can check that the same result holds whenever EN ®x and
Var N = O(EN). (To compare these results with the asymptotic relations

of Sections 3a and 5a one needs to note that the class of policies applied
there were quite different from those used in (6.1) since they were also
adapted to the relevant Poisson or Binomial processes.)

We now consider the next most complex case where N has the
geometrical distribution (P(N<k) = p(1-p)*™%, k=1,2,...). The condition
Var N = O(EN) does not hold, so as before the natural analysis begins
with dynamic programming.

Analogously to (2.2) we define

() = Ef{max{k:
U-N Tsélpt max T

w SN
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One can easily check in this case that

Up(p) (8) = Uy(pry @)

where

p' = p/{p+t(1-p)} .
If we define f(p) = uN(p)(l) we are led to a single integral equation:
1
£(p) = (l-p)_/r max(f(p), 1+£(1/{p+t(1-p)})ldt .
0

As we similarly noted at the end of Section 2 we can solve the equation
for sufficiently extreme values. In this case we know

- =1
f(p) = log(p l) it p>e ™.

This observation just says that if f£(p) <1 the optimal policy is to
select all record values exactly as one does in the fixed sample size
problem when un(t) <1.

One would 1ike to determine the asymptotic behavior of f(p) as
P * 0. We conjecture, but have not been able to prove, that as p 0
-1/2

£(p) ~ cp

for a constant

c<q2.




7. A Result of Burgess Davis on Selections from Permutations.

If one considers a random permutation of the set {1,2,...,n},

then the distribution of the length of the longest decreasing subsequence

is the same as that in a random sample of size n from a uniform distri-
bution. In contrast, the length of the optimal sequentially selected
decreasing subsequence is stochastically larger in the first case.

We let Qn denote the expected length of the longest decreasing
subsequence which can be chosen sequentially from a random permutation.

The main result of this paper immediately implies that
(7.1) lim inf zn/ﬁzﬁ .

Part of the interest of this observation stems from the fact that

’

the study of the ln s was already a primary objective in Baer and

Brock (1968), where 'natural” is used as a synonym for "sequential." On
the basis of substantial computation Baer and Brock even conjectured that
En v f2n . The truth of this conjecture is an immediate consequence of our
main result u, " /2n and the previously unpublishes iLheorem due to Burgess

Davis which is proved below.

Theorem (Burgess Davis).

Proof. First suppose X l<i<», arei.i.d. uniform on [o,1].

i’
For any € >0 and 0< § <1, let Ién) denote the interval

((k—l)e[/ﬁ, ke/J/n] and let Yén) denote the cardinality of the set

{1: 1 <1i<n, X, ¢ Iin)}. Consider the events

i

A ={ min Yl((“) > (1-6) ev/n}
" 1<k<nfe

and note that elementary binomial estimates show P(Ah) +1 as n*>x,
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Now assign "pretend ranks" as follows:

If X e Ién) and X, 1s one of the first [(1-8) €yn] elements
of Ién) we chose its "pretend rank" at random from those integers
between (k-l)(l-&)e/; and k(l-&)e/ﬁ which are not already assigned.

We then ignore all X in Iin) after the first [(1-8)e/n].

1's
We note that on A the sequence of "pretend ranks" is simply a
permutation on the integers {k: 1 < k < (1-8)n}.

Now use the optimal random permutation policy on the set of
"pretend ranks" to select a subsequence with decreasing pretend ranks.
Delete from the subsequence all Xi's which are not smaller than all
their predecessors in the subsequence. This gives an decreasing sub-
sequence.

We now claim that the expected cardinality of the resulting
subsequence is at least P(An)(%h-e /n) with m = [(1-8)n]. First

note, on An the expected length before‘deletions is lm. Let Jin)

denote the interval Iéé) which contains the smallest selected element
from {xl,xz,...,xi}. For Xi+1 to be an observation deleted from the
(n)

selected subsequence it 1s necessary that X,  .EJ By Boole's

i+17°1
inequality and the independence of X1+1 and Jin) we have that the

expected number of deleted observations is at most

n-1 (n)
Zo P(X,,,63,") anlen) = cn .
i=

This proves %mﬁ/;_i P(Ah)-l un//E + € . By (7.1) and the arbitrariness

of £ and § the theorem is proved.
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